在學校學生常常遇到數學科的各項課題、功課和考試, 而有些數學科知識亦可以應用於日常生活中。當學生遇上各類不同的應用題時, 若第一次嘗試行不通, 就必須再次或多次繼續嘗試去找出解決問題的方法。這些“嘗試”就是“策略”。
考試遇到的問題千變萬化,同學們必須具備和認識多種不同的策略,從而聰明地選擇一種或多種策略去處理試題。為了讓家長及學生容易理解,我們試舉下列一些解決應用題的例子:
1)運用合理推測
問題: If five horses can eat five bags of oats in five minutes, how long will it take 100 horses to eat 100 bags of oats?
策略: 1 horse needs 5 minutes to eat 1 bag of oats. So, 100 horses need only 5 minutes to eat 100 bags of oats.
答案: 5 minutes
2)排除不可能的答案
問題: When comparing IVN and OON, Nelson’s experiments found that
A) IVN is easier B) OON is easier C) OON is more difficult D) both A and B E) both B & C
策略: 因A與C同義,即可排除這兩個選擇 , D互相矛盾可排除, E互相矛盾可排除
答案: B (這是剩下的唯一選擇)
3)試湊法 (Trial & Error)
反複探索與嘗試,從成功與錯誤的過程來分析題目,找出答案。
問題: The line graph shows the weight of a container when empty and when Marble A and Marble B are placed in it. What is the weight of Marble A?
策略: Empty = 400g / A + 2B = 800–400g = 400g / 2A + B = 900–400g = 500g
當比較 2A + B 和 A + 2B 的重量(分別是 500g 和 400g),會得出 A 比 B 重 100g,先嘗試 B = 50 (即 A = 150),會發現太輕,可繼續試 A = 100 (即 B = 200),正好吻合。
答案: A = 200g
4)將題目中重要資料繪成圖表
問題: Amy, Ben, Claire and Dave are sitting around a table. If Amy is on the right of Claire and Dave is opposite to Amy, who sits on the left of Dave?
策略: 繪出下圖
答案: Ben
5)先將問題簡單化,從中找出解題步驟
問題: Ω x 3 + 12 x 3 = 125 x 3,Find value of Ω。
策略: 在算式裹,每項都分別有 3 個數量,可先簡化為 1 個,(約簡等號左右兩邊的3),讓它變成 Ω + 12 = 125。
答案: Ω = 125 – 12
= 113
6)倒算法 – 先將文字題列成數式,再用倒算法計出答案
問題: Jenny multiplies a number by 5, adds 10 to the answer and then divides her answer by 3. If her final answer is 15, what number did she start with?
策略: 15 x 3 = 45 >>> 45 – 10 = 35 >>> 35 ÷ 5 = 7
答案: Jenny started with the number 7.
7)嘗試找出題目中的數字或圖形式別,再按著所理解到的模式去推算答案
策略: 2 + 1 + 3 = 6 6 + 1 + 2 = 9 1 + 5 + 1 = 7 7 + 1 + 1 = 9
3 + 1 + 2 = 6 1 + 4 + 4 = 9 2 + 2 + 3 = 7 3 + 3 + A = 9
答案: A = 3
8)試用不同或較簡單的字彙重組題目後,或會領悟出問題的重心
問題: Mary has 17 socks in her drawers. She took 2 socks out yesterday and 4 socks the day before.
How many pairs of socks can she choose from today?
策略: 17 – 2 – 4 = 11 socks
答案: 5 Pairs
9)借用英文字母和數字代入問題中,將問題簡化,再作理解
問題: 3 apples and 2 bananas cost $5.50, 4 bananas cost $2. Find the cost of 1 apple.
策略: Let A be the cost of one apple and B be the cost of one banana.
4B = $2 >>> 2B = $1
3A + 2B = $5.5 >>> 3A + $1 = $5.5 >>> 3A = $4.5 >>> A = $1.5
答案: 1 apple = $1.5
處理應用題時,學生須養成寫列式的習慣,以提高覆核答案的效率。當算出答案後,試想想這是否可行?有關步驟是否正確?如發現答案不合理,就須檢查之前寫下的列式。
要計算有關貨幣、金錢的應用題時,可能需要找出其中一件品件的單價,然後將此應用在問題上。此外,若要計算有關方向問題,應先在所有適當地方畫上「十」字,並寫上方向(北方向上),以理解相互間的方向關係;處理距離問題時,可先找出有關交通工具的時速或所需時間,再運用這些新數據,進一步解答題目。
學生可時常重溫以上策略,並實踐於將來解答應用題上。
家長如對孩子的學習有任何査詢, 歡迎致電 (02) 9415 1860 或 登入本校網站: www.north-shore.com.au 瀏覽
本文由北岸進修學院麥校長提供